Motivation
Todays technologies heavily rely on wireless communications. Our mobile devices connect to infrastructure devices such as wireless routers, perform ad-hoc connections among each other and connect to peripheral devices such as smart watches, fitness tracker and headsets. However, since security is essential in most application scenarios, authentication is a big challenge. To join a wireless network pre-shared credentials are required. Pairing in proximity via bluetooth requires the same pin to be entered on both devices. This proceeding is inconvenient and differs for different kinds of devices. Although, user-friendly and secure pairing mechanisms utilizing multi-modal technologies are proposed, no unified solution exists, yet.
Goal
In this thesis you elaborate different kind of pairing mechanism and analyze their security regarding various attacks. You design a unified multi-modal pairing protocol and implement a prototype on Android.
Your protocol combines pairing strategies over different communication technologies (e.g. WiFi, Bluetooth, NFC, sound, light) and selects a suitable subset matching the devices capabilities. Since some strategies are easier to intercept than others, your protocol attests the paring procedure for retrospective trust estimation in application context. With your proposal we show that a unified multi-modal paring is feasible for both infrastructure and ad-hoc networks with flexible security requirements.